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In this paper we discuss a class of subdivision schemes with a finite support
suitable for curve design. We analyze the case where the masks of the scheme and
the associated difference process are positive. We show that these schemes generate
continuous functions of bounded variation, and that the monotonicity of the data
is preserved. An estimate of the Lipschitz class of the generated functions is
also obtained. For curves in Rd the control polygons generated by the scheme
satisfy some variation diminishing properties, in particular, the arc-length is non­
increasing. We characterize a particular subclass of schemes having bell-shaped
refinable functions. Known sufficient conditions for excluding self-intersections and
critical points of B-spline curves and surfaces hold also for these schemes. ( 1993

Academic Press. Inc.

1. INTRODUCTION

A binary subdivision scheme creates new control points from given ones
by the rule

XJ

I n" +1 =" InL, G; - 2j j'
) = - 00

(Ll )

where the control points at level n, U;'} '(: _x are assigned to the binary
mesh points {2-niL: -x'

Throughout this paper the mask {G;} is of compact support, and by the
notation {Gi}7~0 (aj=O for i<O, i>k) we mean also Go#O, ak#O. The
number k is said to be the support of the scheme.

A detailed discussion of these schemes and a wide ranging list of
references can be found in [1-5, 10].

A survey of the subdivision theory is found in [3], and the different
contributors are mentioned there. Here, we will point to a reference only
if the stated result is not found in [3], or does not follow immediately from
the context there.
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42 I. YAD-SHALOM

In the following we present some notations and facts which are needed
for the Introduction and then we state our results. Other preliminaries are
found in Section 2.

Let /" be the piecewise linear function defined by /,,(2 - ni) = 1;'.
A scheme is said to be C if for each set of initial values {.rn there
exists lEe" such that {I"} tends to j; the convergence is uniform on any
finite interval, and let 0 at least for one choice of initial data.

Representing the data at level n by the generating function

~

F ( ~) - " I,,~jn';;" - ~ j';;",

1= 'Y_'

then the transformation (1.1) from level n to level n + I is given by

where A(z) is the characteristic polynomial of the scheme given by

k

A(z) = L Q;z/.
;~()

(1.2)

( 1.3)

(1.4 )

Here and in the following, equalities of generating functions are defined by
equalities in the coefficients of equal powers of z.

A necessary condition for a CO scheme is

which is equivalent to

(1.5 )

A(l)=2, A(-I)=O. (1.6 )

Backward differences at level n, AI;' =.f:' -I;'I' have the generating
function (I - z) FII(z), while backward divided differences are represented
by 2"( 1 - z) F,,(z). If the scheme satisfies (1.5) and if k> I, then the
difference and the divided difference schemes exist, and have support k - I.
The characteristic polynomial of the difference process is (I +z)·' A(z)
and of the divided difference process is 2(z + I) I A(z).

From now on we denote the scheme by A, the divided difference process
by dA, and the difference process by ~ dA.

Let A be CO then the limit curve produced by applying A to the initial
data U?} ~~" is given by

rz
I(t) = L I:JE( t - i), t E [r, + k - I, r2 + I], ( 1.7)
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where E(t) satisfies the functional equation

k

E(t) = ~ a;E(2t - i).
i=O
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(1.8)

E(t) is said to be the refinable function of A and is vanishing outside the
interval (0, k).

B-spline schemes constitute an example for the above description.
A B-spline scheme of support k is defined by the mask

a= 2-(k- II (k)
I • ,

I
°~ i~k,

and its associated refinable function is the uniform normalized B-spline of
order k with integer knots {O, ... , k }. The characteristic polynomial is

A(z)=2- ik - 11 ±(~)Z;=2-(k-I)(Z+1)k,
;~O I

and the divided difference process is a B-spline scheme of support k - 1.
According to the convergence definition above the scheme is Ck

- 2 (for
k = 1, the scheme does not converge). All results in this paper apply
particularly to B-spline schemes.

In Section 3 we prove that if A has a positive mask (a, > 0, °~ i ~ k)
then the refinable function E(t) is positive on (0, k). This result was first
conjectured in [10] and then proved by C. A. Micchelli and A. Pinkus
in [9]. At the time of writing the paper, that proof was not known to
us, however, our proof extends also to non-stationary schemes (see
Remark 3.2).

The schemes we analyze in Sections 4 and 5 have a positive mask. In
Section 4 we analyze the following class of subdivision schemes, which we
denote by pm (positive of order m).

DEFINITION 1.1. Let A be a subdivision scheme then A E pm, m ~ 1 if
dm-1A satisfies (1.5) and the mask of d"'A is positive.

Observe that if dA has a positive mask, then A also has a positive mask
since multiplication by (l + z)/2 preserves the positivity. Thus we get

and

dA E pm '¢> A E pm + I,

p"'+ I C pm,

m~l,

m~1.

(1.9)

(1.10)
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EXAMPLE 1.2. Chaikin's scheme (the B-spline scheme of order 3) is
given by

(1.11 )

The divided difference process is given by

(1.12 )

The second divided difference process is given by

Qo= I (1.13)

Schemes with support I have no difference process, thus Chaikin's scheme
is p2.

We show that pm schemes are em - '. Moreover, the refinable function
E(f) satisfies Elm - I) E BV and Elml ELI. The Lipschitz continuity of E(f) is
determined, and we get that E E LIP), where

(1.14)

Here II A II w means the ordinary sup norm of the linear operator A, given
by (1.1). This estimate may be improved as we explain later.

pm schemes are monotonicity preserving in the following sense. If the
sequence {Am-If} c R is non-decreasing, then flm ') is non-decreasing.
Here, and in the following, Am denotes the backward difference operator of
order m. We also show that pm schemes are monotonicity preserving in a
stricter sense.

pm schemes satisfy some variation diminishing properties. Starting with
the initial control polygon {f?};~ I c Rd and applying a pI scheme, we
show that

(1.15)

where II II is any semi-norm in Rd. In particular using the norm II 112 we get
that the arc-length is non-increasing, and using norm II II, with d = 1 then
the total variation is non-increasing. Hence the arc-length of the limit curve
and the total variation of its components are bounded by those of the
initial data.

We conclude Section 4 by locating the zeros of the characteristic polyno­
mial and by giving a different definition of pm.
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In Section 5 we discuss a class of schemes producing bell-shaped
refinable functions according to the following definition:

DEFrNITION 1.3. A function E(t) of compact support (0, k) IS bell­
shaped if

E(t) Eel (1.16)

E(t) > 0, tE (0, k) (1.l7)

EG+t)=EG-t} tE(0,D (1.18)

E'(t»O, tE (o,~) (1.19)

x

I E(t - i) = 1. (1.20)
1= -x

In [7] it is shown that the analysis of self-intersections and critical
points done in [6] for B-spline curves holds for curves of the form
L;~J?E(t-i),where E(t) is bell-shaped.

Our main result in Section 5 states that if dA satisfies (1.5) and if the
mask of dA is bell-shaped (in the sense of Definition 5.1) then A E p2 and
the refinable function of A is bell-shaped.

2. PRELIMINARIES

In the following we present and clarify some well-known results about
subdivision schemes (see also [3]).

Property 2.1. Let A be a scheme of support k then the limit values on
an interval [j2 -", (j + 1) 2"], jE Z are determined by only k successive
values at level n, namely, {In :~i k+ I' In particular, starting with a set of
initial data un ~~ ,\' then the interval of interest is [r I + k - 1, r 2 + 1J,
since there the behaviour of the limit function is determined by un ~~ ,\'
The refinable function is the limit corresponding to un 7': 1 (k I) C R,
where I? = bi. o·

Property 2.2. Each k successive values at level n determine k + 1
successive values at level n + 1, by the following relation:
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f~/+'k - I ak _1 ak - 3 0 f~,l

ak ak 2

0 ak I ak 3

0 ak ak-2

f~/+I2k- 2

j';j++12k - l o

0

a3 a l 0

a2 aO
a 3 al f7+k-1

(2.1 )

The matrix (2.1) is given by

1~ i ~ k + 1, 1 ~j ~ k. (2.2 )

The following theorem is central for the smoothness analysis of schemes.

THEOREM 2.3. Let dA be C then A is C+ I, Moreover, If A operating on
U?} converges to f(t), then dA operating on {Af? =f? - f?- I} converges to
f' (t).

For continuity analysis we use the following result.

THEOREM 2.4. Let A satish (1.5); then A is CO if and only if there exists
L E Z + and 0 < rJ. < 1 such that

Here (~dA)L means applying L times the linear operator ~ dA.
Moreover, the refinable function of A, E(t), satisfies

(2.3 )

E(t) E LIP)" y = log2( I/oc I/L). (2.4 )

Remark 2.5. The operator A L is termed the L-iterated scheme of A,
and is given by

(2.5)
J= -:x

{a~L)} ~~ 0 is said to be the mask of A L (N L depends only on k and L).

Property 2.6. Let A be a scheme with a positive mask (a; > 0, 0 ~ i ~ k)
satisfying (1.5). Then:
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(i) A is a CO scheme (see [10]).

(ii) A satisfies the convex-hull property:

47

f(t)ECONV({f7};~i+k I)' t E [j2 /I, (j + I) 2 /I]. (2.6)

Here CONV denotes the set of all convex combinations.

(iii) The refinable function E(t) satisfies

E(t) >0, 0< t<k (2.7)

(see [9]).

An alternative proof of part (iii) will be given in Section 3.

3. POSITIVITY OF THE REFINABLE FUNCTION

The following result was already proved in [9] and the proof here is an
alternative one.

THEOREM 3.1. Let the scheme A satisfy (1.5) and let the mask {ai}7~o he
positive then the ref/nahle function of A, E( t), is positive on (0, k).

Proof E( t) is the limit function corresponding to the initial data
un 7: 1 (k II C R, f? = (j,. °and E(t) is a continuous non-negative function
on (0, k) (see Properties 2.1, 2.6).

Applying one step of A then the data at level I, {f:} 7~ /r)') is given
by

0, ..., 0, a(j, ... , ak' 0, ..., 0. (3.1 )

k ) k I

(It is easy to see that the boundary layers in (3.1) are composed of k - I
zeros by applying the matrix A in (2.1) to the vectors (I, 0, ..., 0) and
(0, ..., 0, 1).) Assume by induction that the data at level 11, {.n}, has the
structure

° + 0, (3.2)

where the regions Q';, Q~ contain k - 1 zeros each. Q~ is composed of only
positive numbers and has at least k + 1 of them.

Let k ~ 3 be odd then each value at level n + I is a positive linear
combination of (k + I )/2 consecutive values at level n. By the induction
hypothesis Q'; and Q~ do not take part in the same combination. Thus, the

640 74.1·4
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only zeros at level n + I are produced by combinations of Q7(Q~) alone,
and since there are only k - I such combinations of Q7( Q~), then the
induction is completed.

The proof of the induction for an even number k is analogous and the
case k = I is trivial.

The proof of the theorem is completed by the following argument. Fix
t E (0, k), then there exists n such that E( t) is determined by k consecutive
values in Q;, and by the convex hull property E(t) > o. I

Remark 3.2. A scheme is said to be non-stationary if the transforma­
tion from level n to level n + 1 depends on n. The proof here applies also
for some cases of non-stationary schemes, since it does not assume that
E(t) satisfies a functional equation. For example consider the scheme

ex

/7+1= L a;_2J
J

n
,

i= - (fJ

'x

f ',.' + 1 -_ " - fn~ ai - 2j ),

j=-oc:

n odd,

n even,

(3.3 )

where {a,}7~o and {ai}7~o are positive masks. The limit corresponding to
f7 = b;. 0 is continuous by extending the arguments in [10]. Then using the
above proof we deduce that E( t) > 0 on (0, k).

4. POSITIVITY OF ORDER m

In the following we discuss properties of the difference process, ! dA
where A E pl. The scheme! dA is given by

Afn+ \ = ,,('. . Afn
I L. 1-2) J'

;EZ

By summation on i we get

and in view of (1.5) we have

(4.1 )

(4.2)

(4.3 )

(4.4 )

In the following we estimate the operator norms II! dA III and II! dA Ilx .
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THEOREM 4.1. Let A E pI then

II~ dAllx = max (I. C2;, I C2i + I) < I

II ~ dA III = 1.

49

(4.5 )

(4.6)

Proof The linear operator ~ dA is represented by the bi-infinite matrix
Cij given by

(4.7 )

Thus from the positivity of {c i } 7~OI we get

and

li~dAIII=sUP(LICi_2jl)=I:c;=1. I
" I

By applying Theorem 2.4 together with (4.5) we get:

THEOREM 4.2. Let A E pi then A is CO and the refinable function of A,
£(t) satisfies

y = log2( 1/ II ~ dA Ilcrc)' (4.8)

The estimation of yin (4.8) may be refined by considering (~dA )L, L> 1
(see Remark 2.5).

For the following monotonicity preserving theorems, we assume that
{fn ~ ~ I C R is a non-decreasing sequence. The convergence interval of the
limit function f is [k, r + 1], where we assume r ~ k.

The support of the piecewise linear interpolant f" is given by
[k - (k - 1 )/2n, r + I - (1/2 n)]. In order to define fn on the whole interval
of convergence we add a dummy value f~+ I :=f~ which does not affect the
limit on [k, r + I], and from now on we assume

[k, r + 1] c supp(f"). (4.9)

THEOREM 4.3. Let AEpl. If {fn~~1 is non-decreasing, then the limit
function is non-decreasing on [k, r + I].

Proof Since {Af?} is a non-negative sequence and the transformation
{Af7} -+ {Af; + I} is by a non-negative matrix then it is clear that {f"} is
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a sequence of non-decreasing functions on [k, r + I] and the limit function
is also non-decreasing. I

The next theorem provides strict monotonicity.

THEOREM 4.4. Let A E pi and let (fn;~ I he non-decreasing. fl
f~) <f~)+ k _ 1 for each i, I ~ i ~ r - k + I, then f is strictly increasing on
[k, r+ I].

Pro()[ First we prove that each k - I successive differences at level n
have a non-zero element (which is the case for n = 0). Each k - I
differences at level n, {Af;'}: ~ jk 2, produces k differences at level n + I,
{Ar' + I } ;'=\~~ k 3 2' according to transformation (4.1) given by the matrix:

Ck Ck 4

ck 1 Ck - 3

Ck 2 Ck 4

(4.10)

C3 CI

C2 Co

('3 C I

Assume by induction that {AI;'}f~t 2 has a positive element; then also
rAIl' + 1 1 2j + 2k - 4 and rAj".' + I } 2j + 2k 3 have a positive element since
t 1 f,=2/+k 2 t 1 1=2/+k I '

each column of the matrix (4.10) has at least two positive entries.
Now, assume in contradiction that there exist t l and t 2 such that
k ~ t I < t2~ r + 1 and I( t I ) =/( t2). For n sufficiently large there exist
)1,)2EZ+ such that)1 +k-I <h,f(tdECONV({f;'}):~+"k 1 and/(t2)E
CONV(U;'}):~+'2k I. Since.l;',+k I <I;~ it follows thatf(td<f(t2 )· I

Remark 4.5. If A E pm then Theorem 4.3 holds also if we substitute I by
pm II and un by {Am I/~T Theorem 4.4 for pm schemes requires in
addition Am 11?<Am If~)+k m' in order to produce pm- I) which is
strictly increasing. This extension is a corollary of Theorem 2.3 and (1.9).
In particular p2 schemes preserve the monotonicity and convexity of the
initial values {fn; ~ I C R.

THEOREM 4.6. Let A E pm, ern; ~ 1 C R then pm II is (J/ hounded
variation andflmlEL I.

Proof By (1.9) and Theorem 2.3 it is sufficient to prove the case m = I.
{In; ~ I can be expressed as a linear combination of r monotone vectors,
and it is clear that I is a linear combination of r monotone functions which
implies IE BV. If fE BV then it is well known that f' ELI. I



MONOTONICITY PRESERVING SCHEMES 51

Remark 4.7 (Geometric Properties of p' Schemes). It is well known
that a curve in R d has a finite arc-length if and only if the component
functions are BV. Thus, Theorem 4.6 states a geometric property of pI
schemes. Theorems 4.3 and 4.4 also have a geometric interpretation.
Assume that the control points at level n, {f;'}, lie on a straight line in Rd.
For any CO scheme it is true that {J;' + I }, lie on the same line. pi schemes
have an order preserving property, i.e., if {f7} appears in a natural order
then {f7 + '} appears also in a natural order.

In the following we analyse variation diminishing properties. Here
Lrn;~ I C R d and we define the "length" of a control polygon at level n by

L(f") = I IIAf711,

where II II denotes any semi-norm in Rd.

THEOREM 4.8. Let A E pi and {fn;~ 1 c R d
; then

L(f" + ') ~ L(f").

(4.11 )

Proof In view of (4.1) together with the triangle inequality we get

IIAJ;'+ 'II ~ L C i 2) IIAf;'ll.
fEZ

The proof is completed by (4.6). I

Remark. Let L UI(f") be defined by

LUI(f") = I 2)11 IIA'+ 'f711;

then the extension of Theorem 4.8 for pm schemes is

(4.12 )

(4.13 )

)=0, ... , m-I, (4.14 )

Theorem 4.8 is especially significant when applied to the norm II III in R
and to the norm II 112 in Rd.

THEOREM 4.10. Let A E pi, un c R and let T~+ \() denote the total
variation off on [k, r + I]. Then

(4.15)
i == 2
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Proof Let [a", b"J denote the support of the piecewise linear function
f". The total variation of f" on this interval is given by

T~:(/") = L 1.1/;'1.

In view of Theorem 4.8, we have

and since by (4.9), [k, r + 1J c [a", b"J, then it follows that

r I

T~+l(/")~ L l.1f?l.
i=O

(4.16)

(4.17 )

(4.18)

Since f(t) = lim" ~xJ"(t) on [k, r + 1J then by a Lemma on p. 100 of [11 J
we get

(4.19)

which completes the proof. I

By the same argument we get:

THEOREM 4.11. Let A E pI, {fn;~ Ie Rd and let L:+ 1(/) denote the
arc-length of the limit curve. Then

r

L:+ '(/) ~ L II .1f?112'
i= 2

(4.20 )

Remark 4.12. The analysis of this section up to now holds for a weaker
definition of pm. This definition requires that d m

I A E CO and the existence
of some L such that the L-iterated scheme of dmA has a positive mask (see
Remark 2.5). In fact, there are schemes where the mask of d m A includes
negative numbers and these schemes are pm corresponding to the new
definition.

In the following, we discuss the zeros of the polynomial A (z) = LJ~ 0 ajz i

of a pm scheme. It is clear that z = - 1 is an m-fold zero and we are
interested in the zeros of

k m

B(z) = 2m (z + 1) m A(z) = L bizi ,
j~O

(4.21 )

If the zeros of B(z) satisfy Re(z) < ° then obviously hj > 0, but the
converse is not true. Let bo = 1-e, bk ",= 1-e, b l = ... =bk m 1=
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2r./(k - m - 1), then for e sufficiently small B(z) has a zero sufficiently close
to ein/lk-m). The following theorem restricts the location of the zeros, and
it is a direct application of Theorem 3.1, p. 397 in [8].

THEOREM 4.13. Let A(z) = L~~o ajz j he a pm scheme then z = -1 is an
m-fold zero and the other zeros are in the sector jarg zl ~ nJ(k - m).

5. BELL-SHAPED REFINABLE FUNCTIONS

DEFINITION 5.1. A sequence {a;}7~o (a;=O, i<O, i>k) is bell-shaped if

ao< a, < ... < a[ki2]'

a;>O, O~ i~ k;

°~ i~k;

(5.1 )

(5.2)

(5.3 )

For example, Chaikin's scheme has a bell-shaped mask.

THEOREM 5.1. Let {a;}7~o he hell-shaped and satisfv (1.5); then the
scheme is pl.

Proof Let {ci} 7:d be the mask of the difference process. By (4.2) we
get

(5.4 )

, ( I )[k/2]([k/2] = a[k/2] - a[k/2] _, + ... + - ao

and co, ..., C[ki2] are positive. Analogously, C[ki2] + " ... , Ck are positive. I

THEOREM 5.2. Let {c;}7:d he bell-shaped; then the mask {a;}7~o is
bell-shaped.

Proof The mask {a;} 7~ 0 is defined by

ai=c,+c, I' (5.5)
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thus (5.1) and (5.2) are obvious. Equation (5.3) is an immediate result of
the following relations:

c i I<Ci~C'tl=a,<ai+l

C i l=c,+I=ai=ai+I'

THEOREM 5.3. Let {a,};=o he hell-shaped. DefIne g(1) hy

g(t) = E(I) - E(I - 1),

where E( I) is the associated reflnahle fimctio/1. Then

I
(5.6 )

(5.7 )

K(t) < 0

g(t) = 0

k+1
0< t <-2-

olherwise.

(5.8 )

Before proceeding with the details of the proof, we comment on
symmetric properties. The fact that a CO scheme with a symmetric
mask (a i = ak J produces a symmetric refinable function (E(k/2) - I) =
E((k/2) + t)) is obvious. The function g(t) is anti-symmetric about
(k + I )/2, since by Theorem 2.3

g(t) = F'(t), (5.9)

where F(t) is the refinable function of the scheme with the mask ii,=
~ (a, 1 + a,l, i = 0, ... , k + I, and by Theorem 5.2 {ii,};:d is symmetric.

In the following we prove Theorem 5.3 for an odd number k (the
even case is proved by analogous arguments). For the proof we need the
following lemma.

LEMMA 5.4. Let [a i };~ II he a hell-shaped sequence, and assume that k is
odd. Let B denote the matrix

I ~ i, .i~ k - 1, (5.10)

and let the vector X = (x I' ..., x k 1) satish'

and

k-I
I ~i~-2-'

(5.11 )

(5.12)
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Then the vector Y = (YI' ... , Yk I) given by

Y=BX,

..Vi = -.Yk --,

55

(5.13 )

(5.14 )

y;>O,
k-l

1~i~-2-' (5.15 )

Proof For convenience we first illustrated the case k = 5. The matrix B
is given by

and we state that Y = BX satisfies

Y4=-YI'

Note that B is obtained by deleting the last column and the two last rows
of the matrix A in (2.1).

A main observation is that

(5.16 )

which follows from the symmetry of the mask, i.e., at = ak _ ,. Now, since

k - I

Y;= L biixi ,
i~1

then in view of (5.11) and (5.16) we obtain

(5.17)

k - I k - I

Yk -i= L bk-i.Jxj = I bi. k
j~ I i = I

k - I

= - L b;.jX j = -Yi'
i~ I

which proves (5.14).

k I

r'j= - I hi,k
j~1

(5.18 )



56 I. YAD-SHALOM

Another result of (5.11 ) and (5.16) is

(k - 1)/2

Yj= L (hit-hj,k j)X j ,

j~ I

I <..i<..k-I, (5.19 )

and note that in the above sum Xj> °by (5.12). In order to prove (5.15)
we will use also property (5.3) of raj}' In particular (5.3) yields

(5.20)

Now since

(5.21 )
bj, k -j = a j _ (k - 2/1'

then for 0<.. i,) <.. (k - I )/2 we get k - 2) > °and as a result of (5.20), b j.j >
bu - j , which implies the positivity of (5.19) for 1 <..i<..(k-l)/2. I

Proof of Theorem 5.3. In the following we assume that k is odd. The
function g(t) on its support (0, k + 1) is the limit corresponding to the
initial data

0, ... ,0, I, -1,0, ... ,0. (5.22 )
k I k-I

Applying the scheme once we obtain U}}:

We now split (5.23) into six regions:

(5.23 )

° + + 0. (5.24 )

QI and Q6 contain k-I zeros each, Q3 (Q4) contains (k-I)/2 positive
(negative) terms, and Q2 (Qs) contains two positive (negative) terms. The
positivity (negativity) of Q3 (Q4) is established by (5.20). Observe that the
sequence (5.24) is anti-symmetric about the dashed line separating between
Q3 and Q4' a fact which follows directly by (5.2).

Assume by induction that the data un at level n has the following
structure. Q7 (Q~) is a boundary layer of k - I zeros. The other values are
split as in (5.24) into two consecutive sets of positive and negative
numbers. The last (k - I )/2 positive numbers are denoted by Q~ and the
others (which include at least two numbers) are Q~. Q~, Q~ are defined
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analogously. Also we assume that Q~ and Q~ are anti-symmetric about the
dashed line separating them.

Now, apply one step of the scheme and observe that each value at level
n + I is a combination of (k + I )/2 values at level n. Hence values from Q~

and Q~ (Q~ and Q~) do not appear in the same combination and by
Lemma 5.4, Q~ u Q~ is reproducing its structure. Combinations generated
by Q~ u Q~ are clearly positive and common combinations of Q7 and
Q~ u Q~ are also positive. Since there exist only k - I combinations of Q7
alone, then Q~ + I at level n + I has only positive values and the induction
is completed. Q7uQ~uQ~ at level n determine g(t) on (0, (k+ 1)/2-e ll ),

where ell -+ 0 as n -+ 00. From the positivity of Q~ it follows that g> 0 on
(0, (k + 1)/2).

THEOREM 5.5. Let dA have a bel/-shaped mask satisfying (1.5), then the
refinable function of A, E(t) is bel/-shaped (according to Definition 1.3).

Proof By Theorem 5.1 dA is pi, hence A is p2 and E(t)EC I
• E(1»O

on (0, k) by Theorem 3.1 and is symmetric about k/2 since the mask of A
is symmetric. Let E( t) be the refinable function of dA then by Theorem 2.3

E'(A)=E(t)-E(t-l),

and by Theorem 5.3 the proof is completed. I

(5.25)

Remark 5.6. Our interest in bell-shaped functions follows from the
following reason. Assume that E( t) is bell-shaped; then the curve

L f?E(t - i),
i= 1

or the tensor-product surface

tE[k,r+l], (5.26 )

Yl r2

L L f?,E(u - i) E(v - i),
I~ I j~ I

uE[k,rt+l), vE[k,r2+1], (5.27)

have no self-intersections and critical points if certain geometrical
conditions are imposed on un ~ = I' u?, r~ I ;~ I' respectively (see [7]).
In particular, B-splines are bell-shaped. .
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